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Abstract. We show that a specific even unimodular lattice of dimen-
sion 80, first investigated by Schulze-Pillot and others, is extremal (i.e.,
the minimal nonzero norm is 8). This is the third known extremal lat-
tice in this dimension. The known part of its automorphism group is
isomorphic to SL2(F79), which is smaller (in cardinality) than the two
previous examples. The technique to show extremality involves using the
positivity of the Θ-series, along with fast vector enumeration techniques
including pruning, while also using the automorphisms of the lattice.

1 Introduction

We show that a specific 80-dimensional even unimodular lattice is extremal,
that is, that it has no (nonzero) vectors of norm less than 8. It follows that
the kissing number of this lattice is 1 250 172 000.1 Although two other even
unimodular extremal lattices in dimension 80 are known [3], the one we describe
has a construction related to coding theory, and has an automorphism group
that contains SL2(F79).

In Section 2 we recall some facts and results about extremal lattices.
In Section 3 we follow the method of Schulze-Pillot [40] to construct our

lattice N80 as a 2-neighbour of a lattice derived from a length 80 extended
quadratic residue code over F19. The prime 19 here is not overly significant; the
construction produces five unimodular lattices in correspondence with the class
group of Q(

√
−79), and the ideal class that yields N80 (the only extremal one

among the five) has an ideal of norm 19 in it.2 Alternatively, a variation (see [1])
on a method of Gross [18, §11] can be used to construct N80, and deals more
directly with the ideals of this imaginary quadratic field. Via either method, it is
fairly immediate that N80 has an automorphism group that contains SL2(F79).

In Section 4 we note that various choices of bases make the group action nice
(doubly transitive as signed permutations on the coordinates), and then make a
specific basis choice that relates directly to the construction in [1].

1 We do not describe herein any features of these minimal vectors. In fact, the 2 555
orbits of these vectors under the known automorphisms were first found (without
proof of completeness) by the authors of [1], with whom we started this project.

2 We could also have chosen l = 5 (as indicated in [40, Example 3]), but for technical
reasons (in lattice generation) wanted l not to be too small.



In Section 5 we first briefly outline our method of proof that the lattice N80 is
extremal. We need to show that N80 has no nonzero vectors of norm 6 or smaller.
We can almost immediately eliminate vectors of norm 2, while a slightly more
involved argument is necessary to show there are no vectors of norm 4. We
then use the nonnegativity of the coefficients of the Θ-series of the lattice to
reduce the problem of showing that there is no vector of norm 6 to the problem
of finding (almost) all the vectors of norm 10. The latter is feasible due to
the fact that we need only find one representative in each orbit class under
the known automorphisms, whereas the more direct method of an exhaustive
search for norm 6 vectors would be significantly more time-consuming. After
first cataloguing the norm 10 orbits that have a nontrivial stabiliser, all the
other vectors will have a full orbit under the known automorphisms, and so we
can reduce the problem by a factor of approximately #SL2(F79) = 492 960. This
leaves us with only 15.3 million orbits of norm 10 to find.

In Section 6 we describe our method to find all the norm 10 orbits. One
principal idea is to prune the tree corresponding to the Kannan-Fincke-Pohst
enumeration algorithm that finds all short lattice vectors [21,12]. Our tree prun-
ing strategy, which generalizes that of [38, §7] and improves the one from [39],
considers a truncated search domain that is much smaller but still finds a sig-
nificant proportion of the desired vectors. Note that the pruning strategy we
describe and its analysis have been independently discovered by Gama, Nguyen,
and Regev [15, §4]. In our case, we need only find one vector in each orbit class,
so the fact we miss some vectors when searching is unimportant. Another idea
to speed the search is to periodically apply a random perturbation to the basis
and re-apply lattice reduction (namely LLL with deep insertions [38]), before
again searching with tree pruning. As our lattices are of quite high dimension,
the new basis is very likely to be different than the previous ones. This can help
in two ways: firstly, searching with a given lattice basis for short vectors, even
with pruning available, tends to become less cost-effective over time, in terms of
the number of vectors found per second; and secondly, and rather surprisingly
to us, a “good basis” for searching can sometimes have many orbit classes which
will not show up until quite deep in the search. We still do not understand this
latter phenomenon, but it is easily overcome via the random perturbations.

Section 7 gives our results and verification methods, plus related questions.

Computations. All timings are given for 2.3Ghz Opteron 8356 processors. If
otherwise unspecified, only one processor is used.

2 Extremal lattices

The extremality of a lattice is typically defined using Θ-series, as for instance
in [7, §7.4].3 In particular, an extremal unimodular even lattice in dimension d
with 8|d has a minimum nonzero vector norm of 2(1+⌊d/24⌋), as this is twice the

3 The precise notion of “extremal” seems to vary over time; for instance [6] is more
demanding, asking that the minimum be at least 1 + ⌊d/8⌋.



dimension of the associated space of modular forms. For odd lattices, shadow
theory is typically used to obtain satisfactory bounds [8]. A relatively recent
survey on extremality appears in [14].

In particular, there were already two extremal even unimodular lattices
known in dimension 80, both due to Bachoc and Nebe [3] via a coding theory con-
struction. The first lattice L80 has an automorphism group 2.A7⊗√

−7 2.M22.2 of

size 212 34 52 72 11 = 4 470 681 600, and this group is known to be a maximal finite
subgroup of GL80(Z) (see [3, Theorem 3.2]). The second extremal lattice M80

has known automorphisms [3, Lemma 4.11] of order 2123452 = 8294 400. For
comparison, the number of known automorphisms of our lattice is 492 960.

Our lattice N80 is isometric neither to L80 nor M80. The argument for L80 is
immediate, as its automorphism group is known to be maximal but 79 does not
divide the order. For M80 we can compute the minimal vectors in a few days,
and perhaps argue via some property of them versus those for N80. We can also
argue via Aschbacher’s theorem on maximal subgroups of finite classical groups,
and in an appendix, we sketch a proof along these lines, showing that Aut(N80)
is a maximal finite subgroup of GL80(Z) up to a possible index of 4.

The idea of extremality can also be extended to include other lattices which
are isomorphic to their dual(s). In this case, the full space of modular forms is
typically replaced by the subspace that is fixed under the Atkin-Lehner involu-
tions [36]. This then relates the question to a simultaneous maximisation of the
minimum of a lattice and that of its shadow; see [13] and [32] for instance.

Finally, we note that [28] shows that there are only finitely many extremal
lattices, though the most easily computed bound on maximal dimension still
seems to be quite high.4 In the other direction, King [22] classifies all (even)
unimodular lattices in dimension 32 with no roots, and finds there to be at
least 107 such; as the lack of roots implies that the lattices have no vectors of
norm 2, it follows that each is extremal. Similarly, Peters [33] shows there are at
least 1051 extremal lattices in dimension 40.

3 Construction of the lattice N80

We follow the paper [40] of Schulze-Pillot on quadratic residue codes and cy-
clotomic lattices, which builds on works from Thompson, Feit [9], and Quebbe-
mann [35, §3] about unimodular lattices with an automorphism of prime order.

4 The proof therein is similar in flavour to the idea we exploit, that is, for sufficiently
large dimension, the first form in a triangular basis will have coefficients that are
negative, and thus positivity precludes the existence of an extremal lattice. See the
recent [42, p. 36] for a brief sketch. Our computations give that the qn+2 term in the
expansion is negative for n ≥ 6 775, 6 789, 6 803 for the respective 0, 8, 16 mod 24
classes, which gives an upper bound of 163 264 = (6802 ·24)+16 for the dimension of
an even unimodular extremal lattice. Finally, Rains [37] has followed upon the work
of Krasikov and Litsyn [27] to obtain that the minimal norm of a unimodular lattice
is (asymptotically with dimension d → ∞) smaller than the Siegel bound ∼ d/12 by
at least a constant factor (see N = 1 in the Remark after Theorem 4.2 in [37]).



The construction gives a unimodular lattice as a sublattice of index p in a
(rescaled) direct sum of two lattices of dimensions 2 and (p − 1). In this, the
2-dimensional lattice T2 can be taken as any integral lattice of determinant p.
The lattice Up−1 of dimension (p − 1) comes about from an (unpublished) con-
struction of Thompson (see [9, §9]). We let E = Q(ζp) be cyclotomic, and take
an ideal A ⊆ OE such that AĀ = (d) with d ∈ E+ totally positive. This ideal
induces a (positive definite) lattice of dimension (p − 1) via a basis for the ring
of integers Z[ζp], with the quadratic form given by Q1(u) = trE

Q(uūd−1). Via a
computation (with the different as in [9, Theorem 9.3], or with a Vandermonde
determinant) one can show that the lattice Up−1 has determinant pp−2.

To obtain a unimodular lattice of dimension (p+1), we start with the direct
sum T2 ⊕ Up−1, and take the sublattice of this consisting of all vectors whose
norm is a multiple of p. Upon dividing the whole lattice by p, the result will be
integral and unimodular, the latter since (p·pp−2)·p2/pp+1 = 1. We need to show
that this actually yields a sublattice, that is, the resulting subset of the original
lattice satisfies the group law, and this is most easily done via homomorphic
projection maps. We take the lattice

N(T2, Up−1) = {(m,u) ∈ T2 ⊕ Up−1 | π(m) = ρ(u)}

under the quadratic form Q
(

(m,u)
)

=
(

Q0(m)+Q1(u)
)

/p, with the projection
maps being π : T2 → R/radQ0

(R) where R = T2/pT2, and ρ̃ : A → A/(1 − ζp)A
(here ρ̃ is on A, with ρ on Up−1). Since (1 − ζp) has norm p, both images will
be vector spaces over Fp of dimension 1, and we can identify them (arbitrarily)
by taking m0 ∈ T2 and u0 ∈ A with Q0(m0) ≡ 1 (mod p) and u0ū0d

−1 ≡ 1
(mod (1− ζp)OE). The lattice N(T2, Up−1) will be even if and only if T2 is even.

3.1 An odd lattice

Rather than derive our desired even unimodular lattice directly, we again follow
Schulze-Pillot, who first constructs an odd lattice for which the automorphism
group can be determined via a relation to coding theory, and then passes to an
even lattice via Kneser’s neighbouring construction.

We let K be the imaginary quadratic field Q(
√
−79), and d = l = 19 an

auxiliary prime that splits. Writing (l)OK = l̄l, the location of l in the class
group of K will have a determining factor on the lattice we derive in the end,
and so the choice of l is not completely arbitrary. We let a be the ideal of K
generated by l and the twisted Gauss sum 1

2

[

1 − 33
∑

a χp(a)ζa
p

]

where χp is
the quadratic character modulo p. Using the notation of Schulze-Pillot, we have
p = −j2 + 8ml with p = 79, j = 15, m = 2, and l = 19, so that yj ≡ 1
(mod l) together with y ≡ 1 (mod 4) yields y = 33.5 Noting that aā = (l) and
taking E = Q(ζ79), we write A = aOE so that AĀ = (19) in OE . Letting T2 be
the 2-dimensional lattice (in a basis {w1,w2}) of determinant 79 given by the

5 The import of this numerology only becomes clear when proofs are included, as
this choice of y for the scaling factor of the Gauss sum allows one to show that the
cyclotomic and coding theory constructions agree.



Gram matrix Q0 =

(

l j
j 8m

)

=

(

19 15
15 16

)

, we fix the gluing via π(w1) = ρ(
[

lζp

]

),

where here
[

·
]

gives the map from A to Up−1. We let No = N(T2, Up−1) with
these choices, noting that No is odd.

3.2 Relation to coding theory

We can obtain the correspondence with coding theory by taking p coordinates
as ei = w1⊕

[

lζi
p

]

for 0 ≤ i ≤ p−1 and an additional one e∞ = jw1− lw2, from
which a computation shows that these ei form a scaled root system of type 80A1

in No, that is, each ei has the same norm, and they are all mutually orthogonal.
Indeed, for all 0 ≤ i ≤ p − 1 we have ‖ei‖ =

[

Q0(w1) + (p − 1) · (l2/l)
]

/p = l
since Q0(w1) = l, while ‖e∞‖ = Q0(jw1 − lw2)/p = l(8ml − j2)/p = l. For the
inner products, we have

〈ei,ek〉 = ‖ei + ek‖ − ‖ei‖ − ‖ek‖

=
1

p

(

Q0(2w1) + (l2/l) · trE
Q

[

(ζi + ζk)(ζ̄i + ζ̄k)
]

)

− 2l

=
1

p

(

4l + l · trE
Q

[

2 + ζi−k + ζi+k
]

)

− 2l

=
1

p

(

4l + l · [2(p − 1) − 1 − 1]
)

− 2l = 0

when i 6= k and i, k 6= ∞, while for i 6= ∞ we have

〈ei,e∞〉 = ‖ei + e∞‖ − 2l

=
1

p

[

Q0

(

(j + 1)w1 − lw2

)

+ (p − 1) · (l2/l)
]

− 2l

=
1

p

[

l(1 + 8ml − j2) + l(p − 1)
]

− 2l = 0.

Using this root system, it follows that the extended quadratic residue code
C ⊆ F80

l (or indeed, any self-dual code) gives an integral unimodular lattice via

NC =

{

1

l

∑

i

aiei

∣

∣

∣
(āi) ∈ C

}

(1)

where the sum is over all 80 coordinates, and āi is reduction mod l of ai. The
proof that NC is the same lattice as our lattice No is given in [40, Proposition 1],
using the generator matrix and idempotent of the code.6 The appearance of the
value y = 33 with the Gauss sum is of relevance therein.

One nicety of this re-visioning is that the code automorphism (of order 4)
given by a∞ → a0, a0 → −a∞, ai → −χp(i)aj , where ij ≡ −1 (mod p), can

6 We have taken a sublattice of index lp+1 via the scaled root system, and then taken
a superlattice of the same index via the construction from coding theory, and so just
have to check that these operations are compatible.



be seen to lift to the lattice. Combined with the order p automorphism in-
duced via ζp, which fixes a∞ and cycles a0 → a1 → · · · → ap−1 → a0, this
gives SL2(Fp) as a subgroup of the automorphism group Aut(No) of the lattice.

In an appendix, we use the classification of finite simple groups to show that
this realisation of SL2(F79) is within a factor of 4 of being a maximal finite
subgroup of GL80(Z), so that [Aut(No) : SL2(F79)] ≤ 4.

3.3 The even 2-neighbours

The above lattice No is odd, while we wish to get an even unimodular lattice. The
method of passing to this is given by the neighbouring method of Kneser [26].
Again following Schulze-Pillot, we want to find v ∈ No with Q(v) ∈ 4Z, and then
take the lattice spanned by v/2 and the sublattice of No whose inner product
with v is even. Via linear algebra over F2, we find that there is a 2-dimensional
space of such v satisfying the conditions (Schulze-Pillot notes this in general via
genus theory). Obviously v = 0 does not help us, while we also need Q(v) ∈ 8Z
if the resulting neighbouring lattice is to be even, and this eliminates another
of the initial 4 possibilities. This leaves but 2 choices for v, one of which gives
a lattice with many vectors of norm 4 (note that v itself must have norm at
least 32 if the new lattice is to have minimum 8) and the other of which is our
desired lattice N80.

As in [40, Proposition 2], we could construct N80 directly using a different
choice with T2 in the cyclotomic construction, though the relation to coding
theory then becomes less clear. For instance, [40, Example 3] takes l = 5 and

Q0 =

(

8 1
1 10

)

to get the same N80. Finally, the last Remark of [40] notes the

automorphisms of No given by SL2(Fp) all transfer to N80. As noted above, we
show in an appendix that [Aut(N80) : SL2(F79)] ≤ 4 so that in particular N80

and M80 are not isometric, but our proof of extremality does not use this.

4 Nice bases for N80

We next link N80 to the construction given in [1] that modifies the method
of Gross. The authors of [1] construct the lattice from a representation that is
irreducible away from 2. In particular, in the basis they obtain, all the coordinates
are of the same parity. Furthermore, the automorphisms are given by a doubly
transitive signed permutation action on the coordinates.

From our construction, we have a lattice N80 with automorphisms gener-
ated by two matrices O79 and O4. We wish to transform this so that the au-
tomorphisms are generated by signed permutations σ79 and σ4 (as in the end
of Section 3.2), thus giving a doubly transitive coordinate action. One way to
achieve this is just to solve the 802-dimensional linear algebra problem given by
equating the automorphisms, that is, solve O79X = Xσ79 and O4X = Xσ4 for
the unknown matrix X (we try solving this with both σ4 and σ3

4).



It turns out that the resulting solution space is 2-dimensional, and if we write
X1 and X2 for generators of it, then the determinant of the matrix

(

X1t+X2u
)

is given by 240f(t, u)40 where f is a binary quadratic form of discriminant −79
corresponding to the ideal of above. To obtain the representation of [1] we choose
the pair (t, u) so that f(t, u) = 8, so that the transform maps vectors of norm 10
in N80 to vectors of norm 16 ·10 in the resulting sublattice of Z80. The resulting
basis has the property that every vector has coordinates all of the same parity.
We denote this transform matrix from N80 to Z80 by T16, and the resulting
lattice basis by B80.

4.1 Identifying orbits

As noted above, the action of σ79 and σ4 is doubly transitive, and we can exploit
this to expedite the finding of a canonical representative for a given orbit. We
first find the largest coordinate in absolute value, and move it to the front, and
then cycle the latter 79 coordinates until the second largest is in the second
position. This movement uses 80 · 79 elements of the group, and after modding
out by the centre {±1}, we only have 39 possibilities left to check for their 78
latter coordinates (we use a lexicographic ordering). Of course, we could have
many ties amongst the two largest coordinates (this is basis-dependent, and we
can map to another choice of (t, u) if desired), but this method will still be much
faster than looping over all 492 960 possibilities.

5 Method of proof

We now describe how we shall show that N80 is indeed extremal. Since the
lattice N80 is even and unimodular, its Θ-series Θ80 lies in the vector space of
modular forms of level 1 and weight 40 (see [30]). This space has dimension 4,
and a triangular integral basis is:

f0 = 1 + 1 250 172 000 q4 + 7541 401 190 400 q5 + O(q6),

f1 = q + 19 291 168 q4 + 37 956 369 150 q5 + O(q6),

f2 = q2 + 156 024 q4 + 57 085 952 q5 + O(q6),

f3 = q3 + 168 q4 − 12 636 q5 + O(q6).

We thus know that Θ80 = f0 + a1f1 + a2f2 + a3f3 for some integers ai. We shall
derive that a1 = a2 = 0 by showing that there are no vectors of norm 2 or 4 in
the lattice. We will then have

Θ80 = 1 + a3q
3 + (· · · )q4 + (7 541 401 190 400 − 12 636 a3) q5 + O(q6).

By positivity we have a3 ≥ 0, and so by finding 7 541 401 190 400 vectors of
norm 10 in the lattice, we deduce that a3 = 0 so that N80 is extremal as claimed.

The reader might wonder why we do not simply search for norm 6 vectors, but
instead aim to find all those of norm 10, as the latter (at first glance) seems much



harder. However, the search in norm 6 has to be exhaustive, while with norm 10
it need not be: we find one vector in each orbit, and apply automorphisms to
get the whole set. We estimate an exhaustive search for norm 6 vectors would
take more than 1 000 times as much work as our method using norm 10 vectors.

5.1 The lattice N80 has no vectors of norm 2 or 4

As we noted above in Section 4, we can change the basis by a transform T16 so
that each vector has its norm multiplied by 16, with the resulting basis having
the property that all the coordinates of any vector will have the same parity. In
particular, a vector of norm 2 or 4 will have the square-sum of its coordinates
as 32 or 64, with necessarily all coordinates being even. Also, the inner product
of any two vectors in this basis will need to be a multiple of 16, a fact we exploit
below. Finally, the lattice automorphisms in this new basis are given by signed
permutations, with the action doubly transitive.

No vectors of norm 2 (roots). One proof (from Elkies) first notes that
the only root systems with compatible automorphisms are A80

1 and D80. With
the former, any automorphism of order 79 would necessarily fix at least one
of the 160 roots, but the 2-dimensional sublattice of N80 fixed by a 79-cycle
has no roots. The latter is similarly impossible; a 39-cycle must fix a root
since gcd(39, 12 640) = 1, but the 4-dimensional sublattice therein lacks roots.

Another way (similar to a comment in [40, Example 3]) would be to use l = 5
and note that we must have

∑

i a2
i = 2l = 10 in (1), while the minimal distance7

of the extended quadratic residue code of length 80 over F5 is > 10, though care
needs to be made here when working with both N80 and the odd lattice L.

A direct computation also easily shows that N80 has no roots. After applying
suitable reduction, the verification typically takes less than 30 minutes. We did
not try a similar computation with norm 4, as we estimate that it would likely
take a few months.

No vectors of norm 2 or 4. We let Be
80 be the sublattice of B80 given by

vectors with even coordinates in the T16 basis, and map Be
80 → Be

80/2 → F80
2

via the additive coordinate map generated by ±2 → ±1 → 1. The image in F80
2

is a binary code C2, and this inherits the automorphisms from the lattice.

We have 16|〈v,w〉 for any v,w ∈ Be
80, which implies that C2 is doubly-even,

that is, each codeword has weight divisible by 4. Similarly, we see that C2 ⊆ C⊥
2 ,

as the inner product between any two codewords is 0 (in F2). We then show
equality here by finding enough vectors in Be

80 to show that dim(C2) ≥ 40.

As C2 is self-dual and has automorphism group PSL2(F79), it follows from
either [25, Theorem 6.2] or [24, Satz 3.4] that C2 is equivalent to the extended

7 It seems that showing the minimal distance exceeds 20 would take about 58 days,
though the computation should parallelise.



binary quadratic residue code,8 and thus has minimal weight of 16 with 97 565
minimal codewords which lie in 3 orbits under the automorphisms.9

We now check that the preimages of codewords of weight 0 and 16 in C2 do
not yield vectors of norm 2 or 4 in N80.

10 This is done using the explicit form
of T−1

16 . For weight 0, we need to check that T−1
16 w is non-integral for

w = 〈8, 0, . . . , 0〉, 〈4,±4, 0, . . . , 0〉, 〈4,±4, (. . .)〉

where in this third expression exactly two of the latter 78 coordinates have size 4.
By the doubly transitive nature of the automorphism action, this suffices. There
are thus 3 + 23

(

78

2

)

= 24 027 possibilities to check here.
For weight 16, we have 3 orbits of codewords. For each orbit we take a

representative, and lift its nonzero coordinates in 216 ways to every choice of
sign for ±2. We then apply T−1

16 to each, and note that none are integral. This
completes the proof that there are no vectors of norm 2 or 4 in the lattice N80.
Presumably we could similarly show that Be

80 has no vectors of norm 96, but
extending our observations to odd-coordinate vectors in B80 looks more difficult.

5.2 Vectors with a nontrivial stabiliser

We now describe how to use the known automorphisms to reduce our vector-
finding quota from 7.5 trillion vectors down to about 15.3 million. We make a
separate computation of the norm 10 vectors that have nontrivial stabiliser. If a
vector v has a nontrivial stabiliser under the above action of G = SL2(F79), there
is some nontrivial element g ∈ G such that the kernel of

(

g − id
)

contains v. So
we loop over nontrivial elements (or conjugacy classes) of G, compute this kernel
(which is a sublattice), and then search for short vectors in it. The elements of
order 3 give a kernel sublattice of dimension 28, for which it takes a few seconds
to find the vectors of norm ≤ 10. These yield 465 orbit classes under the action.
The elements of order 5, 39, and 79 give lattices of dimensions 16, 4, and 2, and
yield 15, 2, and 1 orbits respectively. Upon computing the stabilisers, we obtain

– 1 orbit with stabiliser size 79 · 39 = 3081 (order 79),
– 2 orbits with stabiliser size 39 (order 39),
– 15 orbits with stabiliser size 5 (order 5),

8 We thank Elkies for recalling this fact, and J. Cannon for the Klemm reference.
9 Here is an alternative method. Assume first that there is a codeword w of weight 4

or 8. Take a 79-cycle σ and note that since (8−1)2 < 79 there is some iterate of σ such
that w and σw intersect only in the fixed coordinate. This implies that 〈w, σw〉 = 1,
which contradicts that C2 is self-dual. Since there are no codewords of weight 4 or 8,
we can then apply Gleason’s theorem [16] and get that the weight enumerator is of
the form q0 + (a + 15 200) q12 + (127 965 + 2a) q16 + (11 347 488− 101a) q20 + . . . for
some a ∈ Z, and in an echo of our proof of lattice extermality, show code extremality
(no codewords of weight 12) via finding 12 882 688 codewords of weight 20; for this,
we find short vectors in the lattice, map to the code, and apply automorphisms.

10 We do not explicitly need the fact that the code is extremal for this step, but only
that we have all codewords of length 16 or less.



– 465 orbits with stabiliser size 3 (order 3).

None of the other 78 nontrivial conjugacy classes of SL2(F79) yields an orbit
with vectors of norm 10. We can also note that there no vectors of norm 6 with
a nontrivial stabiliser (though this is not strictly necessary for our proof).

An accounting then tells us that there are presumably 7 541 323 277 280 vec-
tors of norm 10 yet unfound, and dividing by #SL2(F79) = 492 960 predicts
15 298 043 orbits with trivial stabiliser. Via a standard coupon-collecting anal-
ysis [11, p. 213] we expect that about 250 million suitably random vectors of
norm 10 should suffice to hit each orbit at least once.

In fact, for the purposes of proving the lattice extremal, we need only find
(15 298 043 − 12 635) orbits (see the q5 coefficient of f3, and use the fact that
492 960|a3 as we find no vectors of norm 6 with nontrivial stabiliser), and due to
the lengthy final part of coupon-collecting,11 this reduces the expected running
time by about 55%. However, for completeness, we still chose to find all orbits.

6 General search for vectors of norm 10

The general method to enumerate short vectors in a lattice is due to Kannan [21]
and Fincke and Pohst [12]. This corresponds to the computation of the leaves of
a huge tree. As noted by Schnorr and Euchner [38], this tree can be pruned to
some extent. This can be thought of as searching first in the areas of the search
region which are more likely to contain short vectors, or, equivalently, removing
the tree nodes that are less likely to produce useful leaves. The initial pruning
strategy was later improved in [39]. We describe below a further improvement.

6.1 The full KFP tree search

The basic method iteratively looks at the projections to the span of the first i
coordinates for decreasing i. We have a basis given by {bi} and wish to solve
the inequality ‖∑

i xibi‖2 ≤ 10. Borrowing the common notation for lattice
reduction, we take the Gram-Schmidt orthogonalisation, and translate the xi’s
by the µj,i’s:

b
⋆
i = bi −

∑

j<i

µi,jb
⋆
j so that µi,j =

〈bi, b
⋆
j 〉

‖b⋆
j‖2

for i > j, and yi = xi +

d
∑

j=i+1

µj,ixj .

Here d is the dimension. By substituing yi for xi, we get
∑

i y2
i ‖b⋆

i ‖2 ≤ 10, which
by positivity leads to the series of inequalities:

y2
d‖b⋆

d‖2 ≤ 10,

y2
d−1‖b⋆

d−1‖2 ≤ 10 − y2
d‖b⋆

d‖2,

. . .

y2
1‖b⋆

1‖2 ≤ 10 −
d

∑

i=2

y2
i ‖b⋆

i ‖2.

11 The comparison is between
PN

n=1

N

n
and

PN

n=12636

N

n
for N = 15 298 043.



Note that for all i, the variable xi is an integer, while yi is a shift of xi by a
fixed amount (once xi+1, . . . , xd have been chosen). The KFP method proceeds
by looking at all yd’s satisfying the first inequality, then all pairs

(

yd−1, yd

)

satisfying the second, etc. In particular, the vectors with yi ≈ 0 for all i up to a
given point will be found most easily (and these often correspond to small xi’s).
Also, to find more short vectors earlier in the search procedure, it is useful to
run over the different possible xi’s from the centre of the interval implied by
the inequality y2

i ‖b∗
i ‖2 ≤ 10 − ∑

j>i y2
j ‖b∗

j‖2: the variable xi will run across
the integers by decreasing proximity to −∑

j>i µj,ixj . This “zig-zag” strategy,
introduced by Schnorr and Euchner [38], allows one to split the search of the
tree in different stages: in the first stage, we have xj = 0 for all j > 1; then in
the second stage we have xj = 0 for all j > 2 but x2 6= 0; etc. We call stage i the
period of time during which xj = 0 for all j > i but xi 6= 0. Stage i means that
we have already reached level i in the KFP tree but not yet been in level i + 1
(level 1 corresponding to the leaves).

The arithmetic operations corresponding to Gram-Schmidt orthogonalisation
computations can be quite slow. The Magma [5] implementation of the KFP tree
search replaces them by double precision floating-point arithmetic operations, in
a fully reliable way (using [34]).

6.2 Tree pruning

Our pruning strategy consists in restricting the above inequalities by a “pruning
factor” that depends on the level. So the above inequalities become

d
∑

i=j

y2
i ‖b⋆

i ‖2 ≤ 10 · Pj , ∀j

where Pj is the jth pruning factor. A version of this with a specific choice of Pj

appears in [38, §7], and the general description as well as its analysis below have
been independently obtained in [15, §4]. In the latter, the authors also introduce
the concept of “extreme pruning”, which resembles but differs from our bases
switching strategy (see subsection below).

The “best” choice for the pruning factors appears to be something like Pj =
(d− j +1)/d. We happened to choose Pj = 1− (j − 1)/100 in practise. The idea
here can be phrased as follows: we have a given quantity of “norm” (here 10) to
spend on a vector; if we spend a lot on the coordinates xj to xd, there will then
be a lesser chance that we can form an integral vector via some possible choice
of the other coordinates, due to positivity and the fact that most coordinates
will have at least some nonzero contribution.

Efficacy of pruning. To give an idea of the efficacy of pruning, we can use the
notion, from [19], of expected enumeration cost for a given lattice basis {bi} and



for vectors of norm A (a function EnumerationCost is available in Magma [5]):

d
∑

j=1

√

πd−j+1
∏d

k=j A/‖b⋆
k‖2

Γ
(

1 + (d − j + 1)/2
) . (2)

A typical enumeration cost for our bases with N80 was around 1023. This is the
expected number of nodes of the KFP tree. For comparison, the implementation
in Magma [5] has a traversal rate of about 7.5 million nodes per second.

By comparing this enumeration cost estimate to the expected 7.5 · 1012

vectors of norm 10, we find that more than 1010 nodes are expected to be
searched for each vector found. In the case of the pruned enumeration, the jth
summand in (2) should be multiplied by the volume of the truncated hyper-
sphere {(zj , . . . , zd) : ∀i ≥ j,

∑

k≥i z2
k ≤ Pi}. By estimating these volumes with

a Monte-Carlo rejection method (uniformly sampling points in the full hyper-
sphere and counting how many belong to the truncation), we expect our pruning
to gain a factor of around 104 here, at the cost of missing about 60% of the short
vectors. These speedup and miss ratios are not constant across all levels of the
search: they seem to be closer to 100 and 25% respectively for the levels of our
interest (due to the early abort and perturbation strategy described below).

6.3 Switching bases

The early stages of the tree search can have a significantly better chance of
providing short vectors, due primarily to the relative paucity of “uninteresting”
branches that tend to become more numerous at higher levels. In practice, we
would find 105 vectors in about 30 minutes, for a ratio of about 150 000 nodes
searched for each vector found, more than an order of magnitude lower than the
above estimate, even with the pruning included.

Every 15-30 minutes we would switch the basis by applying a random per-
mutation to the coordinates of the current basis, and then multiplying by a
random upper triangular matrix with ones on the diagonal and off-diagonal en-
tries in {−1, 0,+1}. We then re-apply LLL (with a δ-value nearly 1) to the
perturbed basis, and then LLL with deep insertions [38]. Overall, this takes only
a few seconds. This basis switching also makes parallelisation essentially trivial.

A second reason for periodically changing the basis is that (a phenomenon
we found experimentally) there are some bases which “hide” many of the orbits,
in the sense that every vector in such an orbit would not be found until we reach
one of the latter stages. We currently have no explanation of this.

7 Conclusion and related work

We implemented the above in a combination of Magma [5] and C. As we typically
found 105 vectors of norm 10 in about 30 minutes, the estimated time was around
52 days. Using 14 processors in parallel, it took us about 4 days in April 2009.



7.1 Software to check our data

A verification of our proof can be done in much less time than the computation
itself. We provide software12 that takes less than 10 hours to verify that N80

is indeed extremal. The input consists of 15 298 526 entries that correspond to
coordinate vectors in the T16 basis of Section 4. The following checks are run:

– Each entry lexicographically follows its predecessor
– Each entry has norm 160 and is integral when multiplied by T−1

16 ,
– Each entry is lexicographically the first in its orbit.

The first condition ensures that all entries are distinct, while the last ensures
that each corresponds to a distinct orbit, with the middle condition implying
that the vectors have norm 10 and are in N80. We can also list the 483 orbits
with nontrivial stabiliser, whose provenance can be checked separately.

7.2 Three lattices of dimension 72

The work in progress [1] investigates three lattices of dimension 72. Two of these
are 2-neighbours of a lattice constructed via the extended quadratic residue code
over F3, and the other involves a code over Z/4Z. None of these turned out to be
extremal (minimal norm of 8), and indeed, we know of no extremal lattice of this
dimension. In fact, a recent preprint of Griess [17] claims to be the first to prove
a minimal norm as large as 6 for an even unimodular lattice of dimension 72.

7.3 Other candidate lattices for extremality in dimension 80

In [3], the authors note three other candidates for extremality amongst even uni-
modular lattices in dimension 80. One candidate comes from a cyclo-quaternionic
construction given in [31, Remark 5.2], and its automorphism group contains
SL2(F41)⊗ S̃3, which is of comparable size to our SL2(F79). We do not see how
to facilitate the calculation of canonical orbit representatives as readily as in our
case, but the fact that canonicalising took only about 5% of our running time
indicates that our methods could work in this case, with sufficient effort.

The other two candidates come from a cyclotomic construction explored
in [4], and have an automorphism group containing the general affine linear
group F+

41 ⋊ F∗
41. Our initial opinion is that the automorphism group (even if

augmented by an order 4 element) is too small for our method to work well here.

Acknowledgments. We thank the authors of [1], with whom we started this
research, and S. R. Donnelly who shared some of his ideas with us. We also
thank the anonymous reviewers for their recommendation to add a proof that
the automorphism group of N80 differs from those of L80 and M80. The present
work is part of the Australian Research Council Discovery Project DP0880724
“Integral lattices and their theta series”.

12 The code is checkit80.c (to be run with arguments “10 〈filename〉”) and the data is
LAT80.n10.sc16.bz2 in the directory http://magma.maths.usyd.edu.au/~watkins
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A Appendix: proof that M80 and N80 are not isometric

We wish to show that M80 is not isometric to our lattice N80. Bachoc and Nebe
list a subgroup of Aut(M80) of order 2123452, while we have S ∼= SL2(F79) as
a subgroup of Aut(N80). We wish to show that there is no finite matrix group
in GL80(Z) that is a supergroup of both of these (possibly after conjugation).

We let G be such a putative supergroup, and note that [G : S] ≥ 27335.
From a classical theorem of Minkowski [29] on the modular reduction of matrix
groups, we have injective maps ιp : G →֒ GL80(Fp) for all odd primes p. By



taking a gcd over all odd p this gives a bound of

#G
∣

∣ 2198358524714118136175194233292312372412 ·43 ·47 ·53 ·59 ·61 ·67 ·71 ·73 ·79,

though here we really only need such a divisibility result at a specific prime.13

We write H = ι7
(

G∩SL80(Z)
)

, and since every matrix in S ∼= SL2(F79) has
determinant 1 we have ι7(S) ⊆ H. As every matrix in G has determinant ±1,
we get [ι7(G) : H] ≤ 2, and since [G : S] > 4 and ι7 is injective, this implies
that [H : ι7(S)] > 2. The use of a theorem of Aschbacher (see below) now implies
that 7780

∣

∣ #H, which contradicts the above bound. Thus G cannot exist, and
so M80 and N80 are not isometric. Indeed, this argument almost shows that S
is maximal finite in GL80(Z), though a low-index extension could still exist.

We now use Aschbacher’s theorem [2] on maximal subgroups of finite classical
groups (see also [23]). Let l be an odd prime (to be specified below) and suppose
that ιl(S) ⊂ H ⊆ SL80(Fl). We note that S splits into a pair of conjugate abso-
lutely irreducible unitary 40-dimensional representations defined over Q(

√
−79).

We know that H lies in some maximal (proper) subgroup of SL80(Fl), and
the theorem of Aschbacher lists the possibilities. For any inert prime l that does
not divide #S, we can eliminate class 1 of Aschbacher since ιl(S) acts irreducibly
(we could consider split primes also, but choosing an inert prime simplifies the
argument slightly). Classes 2 and 4-7 are not possible simply because 79 must
divide #H. This leaves subgroups of class 3 (splitting as above) or class 8 (inclu-
sions of classical groups), or class 9 (other simple groups, handled below). The
inclusions of classical groups give us G80(Fl) for G = Sp,SO± and SU40(Fl),
while the splitting of class 3 yields SL40(Fl2).2. where the notation indicates that
we have a 2-extension – in this case, we continue the analysis after replacing H
by H ∩ SL40(Fl2), where this subgroup has index at most 2 in H.

We iteratively apply Aschbacher’s theorem to each classical group obtained;
either H is isomorphic to this classical group, or is contained in a maximal
subgroup of it. We again use 79|#H, and find that the only possible maximal
subgroup of Sp80(Fl) that could contain H is SU40(Fl).2, and similarly with the
others. Any maximal subgroup chain of classical groups must end here, since H
contains ιl(S) and S → SU40(Fl) is absolutely irreducible.

So we end in one of the following cases: H is isomorphic to one of

SU40(Fl).ǫ or SL40(Fl2).ǫ with ǫ = 1, 2, or G80(Fl) with G = Sp,SO±,SL;

or [H : ιl(S)] = 2, in correspondence to a 2-extension as above; or (sometimes
called “class 9” for Aschbacher) we have PSL2(F79) ⊂ K ⊂ P, where K is
simple and P is the associated simple group of one of the above classical groups.

There is sundry general knowledge for this latter situation, but for us a case-
by-case analysis (with l = 7 for concreteness) using the known orders of the finite
simple groups is sufficient to show that no such K can exist.14 We conclude that
either [H : ι7(S)] = 2, or that H contains a copy of SU40(F7) and so 7780

∣

∣ #H.

13 We note in passing that the best upper bound on the size of a finite matrix group
is due to Feit [10], relying on unpublished notes of Weisfeiler [41].

14 One can also proceed via degrees of representations, and D. F. Holt indicated to us
that the tables of Hiss and Malle [20] should suffice for this.


